Advertisement

The Cutting Edge: COMPUTING / TECHNOLOGY / INNOVATION : Quake Safety Could Be a Hair’s Breadth Away : Construction: Scientists say carbon composite will help structures withstand future temblors.

Share
SPECIAL TO THE TIMES

It’s a fiber as thin as a human hair, but it’s strong enough to protect bridges and buildings from the powerful forces of earthquakes. Had it been around a year ago, scientists say, it could have prevented six of the seven major bridge failures wrought by the 6.7-magnitude Northridge earthquake that left 61 people dead and caused billions of dollars worth of damage last Jan. 17.

It’s a carbon composite--10 times stronger than steel--that scientists, manufacturers and government officials say will help protect California’s bridges and buildings from collapse when the next big quake hits.

“This is a third alternative to concrete and steel,” said Gilbert Hegemier, director of the Charles Lee Powell Structural Research Laboratories at UC San Diego, where carbon composites are being tested. “It provides stiffness and strength at much less weight. That mitigates the earthquake problem tremendously.”

Advertisement

Jim Roberts, the chief building engineer for the California Department of Transportation, said carbon composites show the most promise for retrofitting the 11,000 California bridge columns in need of structural reinforcement.

“Carbon fiber is much stronger” than steel, which is widely used now, Roberts said. “It’s very expensive, but because it’s stronger you use less. And it’s not as labor-intensive to install, so it should save money.”

Unlike steel, carbon composites strengthen bridge columns without making them brittle and vulnerable to collapse, said Gloria Ma, executive vice president of Xxsys Technologies, a San Diego company that has developed a machine to wrap columns in carbon fibers.

Since heavy structures are more vulnerable to earthquake damage, the low-weight composites are an attractive alternative to retrofitting with steel, Ma said. Also, carbon composites dissipate energy better than steel and concrete, so they can protect buildings from crumbling and bridge columns from buckling.

The composite threads are spun from a petroleum-based plastic that is heated and stretched until the molecules “carbonize.” Before it can be used to wrap bridge columns, the threads are bathed in a glue-like resin, according to Ma.

Carbon composites were first developed in the 1960s and until recently were used exclusively for high-performance military aircraft and satellites. As the prices have come down, however, the materials are finding their way into commercial airplanes, tennis racquets, bicycles and other products.

Advertisement

Retrofitting buildings and bridges for earthquakes is a new billion-dollar market for the carbon composites industry, said John Weidner, director of composite structures for Hercules Inc., a Magma, Utah company that is the nation’s largest producer of carbon composites.

“This is not only for highway column wrapping,” Weidner said. “There are lots of columns used in building structures like parking garages. It’s a very large potential market.” Bridge columns built before 1971 are in danger of crumbling because they don’t have enough horizontal hoop steel embedded in the cement. Traditionally, these columns are fortified with steel jackets.

But the jackets make the columns stiff and therefore more likely to break during an earthquake. Also, the process of welding the steel to the outer walls of the columns is labor-intensive, time-consuming and expensive.

Wrapping bridge columns with the hair-like carbon composites shows promise because it can be installed less expensively with a circular machine called a Robo-Wrapper. Developed by Xxsys, the bright yellow Robo-Wrapper winds spools of carbon composite strands around columns more than 10 times faster than steel jackets can be applied, Ma says. Once the column is wrapped, the carbon strands are cured into a protective shell as strong as steel, then painted to resemble gray concrete.

Column wrapping is just months away from qualifying for bidding in Caltrans projects, according to Roberts, and he expects to have the first columns wrapped by summer.

The technology also shows promise for strengthening bridge decks, freeway sound walls and buildings, Hegemier said. When woven into a shiny fabric, the carbon threads work like a non-corrosive “structural wallpaper” that can reinforce weak structures.

Advertisement

Last year, UCSD researchers applied the structural wallpaper to a five-story concrete masonry building that had been damaged during a simulated earthquake. Tests showed the building was twice as strong with the carbon wallpaper than when it was initially built, Ma said.

Hercules already produces 4 million pounds of carbon composites a year, and Weidner predicted that if composites live up to their potential, demand will jump by a factor of 10.

Trans-Science, a La Jolla research company testing various recipes for carbon composites, is also hoping to cash in.

“This is the start of a new technology,” said Santosh Arya, senior research scientist at Trans-Science. “If it’s successful, it can be applied to other areas, like buildings and ships. The potential is enormous.”

Advertisement