Advertisement

Robots mimic animals in study of evolution

Hill writes for the Associated Press.

Robots wag their tail fins and bob along like bathtub toys in a pool at a Vassar College lab. Their actions are dictated by microprocessors housed in round plastic containers, the sort you’d store soup in.

It hardly looks like it, but the two swimming robots were set loose in the little pool to study evolution, acting out predator-prey encounters from roughly 540 million years ago.

The prey robot, dubbed Preyro, can simulate evolution.

This is not like robot evolution in the “Terminator” movie sense of machines turning on their human masters. Instead, Vassar biology and cognitive science professor John Long and his students can make changes to the tail of Preyro to see which designs help it avoid the predator robot.

Advertisement

“We’re applying selection,” Long explains, “just like natural selection.”

Long is among a small group of researchers worldwide studying biology and evolution with the help of robots that can do things like shimmy through water or slither up shores. Long’s robots, for instance, test theories on the development of stiffer backbones. The researchers believe the machines will catch on as advances enable robots to mimic animals far better than before.

Microprocessors are now tinier and more sophisticated. Building materials are more pliable. The same technology driving the use of electronic prosthetic limbs and vacuuming robots also is giving scientists a sophisticated tool to study biology.

“In the past, if you think about it, robots wouldn’t work because we could only make these big metal things with rotating joints that were really stiff . . . and that’s not how nature is,” said Robert J. Full, professor of integrative biology at UC Berkeley. Full’s lab at Berkeley has built robots that can creep like cockroaches or climb like geckos.

Advertisement

In Switzerland, researchers a few years ago built a yellow salamander robot that can swim and walk. They wanted to investigate vertebrates’ transition from water to land. In a Web video, the robot is seen squirming out of Lake Geneva.

At Harvard University, George Lauder, professor of organismic and evolutionary biology, studies fish locomotion with the aid of robotic fins. He says scientists are not trying to build spitting images of animals, but rather to mimic certain characteristics -- a fin or a spinal column -- to study how they work. Scientists then alter that characteristic to see how it affects performance.

The small amount of robot research so far has yet to dramatically alter evolutionary studies, but it has helped researchers evolve their understanding of some animals.

Consider Madeleine the swimming robot. Madeleine is roughly the size and shape of a big bed pillow with four flippers sticking from its sides, but it was used to study a 45-ton marine reptile that patrolled the seas in the Jurassic Period.

Fossil records show that the massive pliosaur, dubbed Predator X, had two sets of largely symmetrical flippers, indicating the animal used all four to swim. Long said that sets apart Predator X from modern animals including otters, sea lions and turtles, which tend to use one set of flippers for propulsion and the other for steering.

Researchers studying Predator X asked Long to investigate why the creature used all four flippers for swimming. Madeleine was programmed to swim with two flippers, then all four. The robot demonstrated that using four flippers to swim could be a bad proposition, energy-wise. But they do provide a sort of turbo-boost for quick accelerations -- handy for catching dinner.

“The otter and the pliosaur both swim the same speed,” Long said, “but, man, that pliosaur can really take off.”

Robot builders like Long still use computer simulations to complement their work. But Long says swimming robots like Madeleine have advantages because it is extremely difficult to simulate the interaction between a flexible solid -- like an animal’s tail -- and a liquid.

Advertisement

“The thing about robots is, robots can’t violate the laws of physics,” he said.


Advertisement