San Bruno gas blast gives ammunition to critics of industry risk assessment

As federal investigators examine last month’s deadly natural gas pipeline explosion in San Bruno, engineering experts already have a strong sense of what went wrong and say the evidence calls into question widely used industry estimates of pipeline safety.

A 28-foot segment of ruptured pipe shows signs that its steel had become brittle over the decades. The blast point also occurred at a dip in the landscape that left the underground pipe subject to corrosion from accumulating water and sewage. And that bend in the line meant more welds were used during construction, creating another potential vulnerability.

When the 30-inch-diameter line finally failed, it released an explosive force that exceeded the thrust of a space shuttle at launch, ejecting tons of asphalt and dirt into surrounding streets. A massive cloud of pressurized gas ignited moments later into a fireball that torched 55 homes and killed eight people.

Such pipelines exist under homes and neighborhoods throughout the country. California has 3,600 miles of pipe under densely populated areas.


Nearly half the high-pressure gas transmission lines in the country were installed from about 1950 to 1970. The industry has developed mathematical models to predict which pipelines are at risk and how often they need to be replaced. But a deep divide exists among experts about whether those models are accurate.

Now, the San Bruno disaster has bolstered the arguments of those who say the industry has put far too much faith in technology and inspection methods.

“The industry worships these models,” said Robert Bea, a professor of civil engineering at UC Berkeley who is a member of the National Academy of Engineering because of his pioneering work in risk analysis. “They are treated as theology.”

The inspections and analysis that PG&E conducted before the accident failed to identify the San Bruno pipeline segment as one of the 100 top safety priorities in the utility’s system. That failure points to an analytical breakdown, Bea said. PG&E officials say they won’t make any conclusions until after investigators determine the cause of the accident.


Because the industry thought its system was safer than ever before, the accident has triggered some serious soul-searching.

“Every time I see photographs of it, it makes me sick,” said Theodore Willke, former chief of the federal Office of Pipeline Safety and now a technical consultant. “People don’t know these huge pipelines are in their backyards. They don’t know the energy that is contained in these pipes.”

The failure of the San Bruno line has much in common with an explosion in 2000 that killed a dozen people camping along the Pecos River in rural New Mexico. That disaster triggered a major overhaul in federal law and regulation. Until the San Bruno explosion, those changes had led to a growing level of confidence about aging pipeline infrastructure.

The National Transportation Safety Board has shipped three sections of pipe from the explosion site to its laboratory in Ashburn, Va., where metallurgists and engineers will examine welds, corrosion coatings and so-called chevron marks, which are microscopic ridges in the tear surfaces of the pipe that can disclose which way it ripped apart. Although the investigation will probably continue into next year, a number of factors have become obvious to engineering experts.


Like the pipeline in the New Mexico explosion, the 28-foot segment of San Bruno pipe that ruptured at Earl Avenue and Glenview Drive was at a dip in the topography, a vulnerability that almost certainly played a key role. When the pipeline was built in 1956, the dip forced construction crews to weld the line together in small segments. Normally, a pipeline is supposed to flex. But the large number of welds could have created spots that were rigid and others that were weak.

“I would pay attention to the welds, because there are many, many welds,” said Erez Allouche, a professor of civil engineering at Louisiana Tech University and research director for the school’s center for trenchless pipeline technology. “There were so many welds in such a short area, maybe the pipe was rigid.”

The dip would also allow water — among the compounds that can contaminate natural gas — to pool inside the pipe. PG&E only recently began installing collectors and filters to resolve the water problem in portions of the long segments that ran from Milpitas, just north of San Jose, to San Francisco, according to regulatory filings.

The problems relating to the dip continued to multiply when, in recent decades, sewers frequently overflowed in the neighborhood. Sewage can be extremely acidic, owing to bacteria that excrete acid. The potent brew accelerates corrosion and could have posed serious problems if the mix saturated the soil around the gas pipe.


High-resolution photographs of the pipe taken by The Times after the accident show that it fractured without stretching, known in engineering terms as “tensile necking,” Bea said. It points to the possibility that the metal had become brittle with age.

The brittle condition could have been caused by contaminants carried in the gas. One such contaminant, hydrogen sulfide gas, commonly occurs in natural gas and is well-documented in the scientific literature of pipeline safety.

If the pipe was brittle, it would have been even more vulnerable to internal and external corrosion, which starts as small pits in the metal and has been known in the past to eat away about half the thickness of a pipe wall.

A combination of brittle metal and inflexible welded segments may have left the section of pipe particularly vulnerable to any ground movement or settling of the soil. In 2007 and 2008, the city replaced the sewer line running directly under the gas pipe using a method called “pipe bursting.” The old 6-inch sewer line was fractured by a probe and a 10-inch line was fed into the enlarged cavity.


If the soil settled below the pipe, it would have put the bottom of the line in tension and left it more vulnerable to metal fatigue from oscillations in pressure that normally occur in a gas pipeline, said R. Craig Jerner, a Dallas metallurgist and expert witness.

Like many gas pipeline failures, the accident probably involved a series of factors that left the pipe’s wall, measuring three-eighths of an inch thick, too weak to contain the forces pushing against it.

“Rarely is a catastrophic failure caused by a single issue,” Allouche added.

PG&E officials said in a statement that the pipeline had been repeatedly examined in the last 12 months, undergoing both routine and special inspections that showed it was not among the 100 highest-risk segments of pipe in its system.


But over the last 10 years, Bea, the UC Berkeley professor, published a series of papers that called into question the tools used by the oil and gas industry to predict pipeline safety.

In one case, he obtained a section of badly corroded pipe from the oil industry and used conventional mathematical models to predict how much pressure would cause it to burst and where the failure would occur.

Then the pipe was pressurized until it burst. The models were wrong in predicting both the location and pressure, Bea said.

A deep philosophical debate exists about the safety of older pipes.


“Honestly, we have a problem in this country,” said Michael Peevey, president of the California Public Utilities Commission. “It’s much broader than the PG&E problem. We have old and inadequate infrastructure. We also have explosions in places across the United States.”

Academics like Jean-Pierre Bardet, director of USC’s environmental engineering program, agree. “We are failing everywhere,” he said. “Our infrastructure is not being maintained and is gradually decaying, and as a result we are seeing more accidents.”

But other pipeline experts dismiss such assertions, saying there is no simple relationship between the age of a pipe and its safety.

“Age by itself is not a factor in failure,” said Willke, the former federal regulator. “People who call for replacement of pipe after a certain number of years are misguided. It makes no more sense than replacing the Golden Gate Bridge after a certain number of years.”


Brigham McCown, former chief of the federal Pipeline and Hazardous Materials Safety Administration, said wholesale replacement of pipes, even if it did improve safety, would come at a steep price.

“You can make something perfectly safe but put everybody out of business,” he said. “We can change out every pipe over a certain age, but are you willing to pay double for your natural gas?”